Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Target of rapamycin signaling mediates vacuolar fragmentation.

Identifieur interne : 000722 ( Main/Exploration ); précédent : 000721; suivant : 000723

Target of rapamycin signaling mediates vacuolar fragmentation.

Auteurs : Bobbiejane Stauffer [États-Unis] ; Ted Powers [États-Unis]

Source :

RBID : pubmed:27233284

Descripteurs français

English descriptors

Abstract

In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.

DOI: 10.1007/s00294-016-0616-0
PubMed: 27233284
PubMed Central: PMC5124550


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Target of rapamycin signaling mediates vacuolar fragmentation.</title>
<author>
<name sortKey="Stauffer, Bobbiejane" sort="Stauffer, Bobbiejane" uniqKey="Stauffer B" first="Bobbiejane" last="Stauffer">Bobbiejane Stauffer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA. tpowers@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27233284</idno>
<idno type="pmid">27233284</idno>
<idno type="doi">10.1007/s00294-016-0616-0</idno>
<idno type="pmc">PMC5124550</idno>
<idno type="wicri:Area/Main/Corpus">000A44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A44</idno>
<idno type="wicri:Area/Main/Curation">000A44</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A44</idno>
<idno type="wicri:Area/Main/Exploration">000A44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Target of rapamycin signaling mediates vacuolar fragmentation.</title>
<author>
<name sortKey="Stauffer, Bobbiejane" sort="Stauffer, Bobbiejane" uniqKey="Stauffer B" first="Bobbiejane" last="Stauffer">Bobbiejane Stauffer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA. tpowers@ucdavis.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616</wicri:regionArea>
<wicri:noRegion>95616</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current genetics</title>
<idno type="eISSN">1432-0983</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biological Transport (MeSH)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Intracellular Membranes (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Vacuoles (metabolism)</term>
<term>Yeasts (genetics)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Levures (génétique)</term>
<term>Levures (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Membranes intracellulaires (métabolisme)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transport biologique (MeSH)</term>
<term>Transport des protéines (MeSH)</term>
<term>Vacuoles (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Levures</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Intracellular Membranes</term>
<term>Vacuoles</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Levures</term>
<term>Membranes intracellulaires</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Vacuoles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Transport</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Protein Binding</term>
<term>Protein Transport</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Régulation de l'expression des gènes</term>
<term>Stress physiologique</term>
<term>Transduction du signal</term>
<term>Transport biologique</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27233284</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0983</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Current genetics</Title>
<ISOAbbreviation>Curr Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Target of rapamycin signaling mediates vacuolar fragmentation.</ArticleTitle>
<Pagination>
<MedlinePgn>35-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00294-016-0616-0</ELocationID>
<Abstract>
<AbstractText>In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stauffer</LastName>
<ForeName>Bobbiejane</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Powers</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA. tpowers@ucdavis.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM086387</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Genet</MedlineTA>
<NlmUniqueID>8004904</NlmUniqueID>
<ISSNLinking>0172-8083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007425" MajorTopicYN="N">Intracellular Membranes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014617" MajorTopicYN="N">Vacuoles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ER stress</Keyword>
<Keyword MajorTopicYN="N">TORC1</Keyword>
<Keyword MajorTopicYN="N">Vacuolar fission</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27233284</ArticleId>
<ArticleId IdType="doi">10.1007/s00294-016-0616-0</ArticleId>
<ArticleId IdType="pii">10.1007/s00294-016-0616-0</ArticleId>
<ArticleId IdType="pmc">PMC5124550</ArticleId>
<ArticleId IdType="mid">NIHMS793009</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Genet. 2016 Aug;62(3):553-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26910532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1996 Nov;71(3):237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8929562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):1077-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2003;37:435-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14616069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Oct;18(10):3873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Apr;25(8):1251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24523285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Dec 15;26(25):4618-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26466677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2012 Apr;113(4):421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22177309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Aug 15;23 (16):1929-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 1;287(23):19029-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22511765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Sep 19;90(6):1031-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9323131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Mar 5;110(10 ):3823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23417307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Sep;61(5):1147-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Mar 18;156(6):1015-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11889142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 15;287(25):20913-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22547071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Nov 25;203(4):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24385483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Feb;87(3):1076-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1689059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Jul;10(7):1741-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2050111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Aug;8(8):622-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 May 25;209(4):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25987606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Dec 20;279(2):445-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Dec 15;26(25):4631-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26510498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Apr;25(7):1171-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2015 Sep;25(9):1043-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2015 Nov;61(4):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25957506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2013 Nov 25;27(4):462-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24286827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Aug;23(15):2955-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22696681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Sep;23 (17 ):3438-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22787281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Mar;124(6):903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8132712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Biophys Sin (Shanghai). 2009 Jun;41(6):437-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19499146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1993 Feb;9(2):175-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8465604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Mar;23(5):881-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Jan;14 (1):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2779-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e54160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23383298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Apr;1793(4):746-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1988 Oct;107(4):1369-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3049619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Sep;7(9):1375-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8885233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Apr;1793(4):650-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786576</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Stauffer, Bobbiejane" sort="Stauffer, Bobbiejane" uniqKey="Stauffer B" first="Bobbiejane" last="Stauffer">Bobbiejane Stauffer</name>
</noRegion>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000722 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000722 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27233284
   |texte=   Target of rapamycin signaling mediates vacuolar fragmentation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27233284" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020